72 research outputs found

    Genome-wide Study Identifies Association between HLA-B*55 : 01 and Self-Reported Penicillin Allergy

    Get PDF
    Hypersensitivity reactions to drugs are often unpredictable and can be life threatening, underscoring a need for understanding their underlying mechanisms and risk factors. The extent to which germline genetic variation influences the risk of commonly reported drug allergies such as penicillin allergy remains largely unknown. We extracted data from the electronic health records of more than 600,000 participants from the UK, Estonian, and Vanderbilt University Medical Center's BioVU biobanks to study the role of genetic variation in the occurrence of self-reported penicillin hypersensitivity reactions. We used imputed SNP to HLA typing data from these cohorts to further fine map the human leukocyte antigen (HLA) association and replicated our results in 23andMe's research cohort involving a total of 1.12 million individuals. Genome-wide meta-analysis of penicillin allergy revealed two loci, including one located in the HLA region on chromosome 6. This signal was further fine-mapped to the HLA-B*55:01 allele (OR 1.41 95% CI 1.33-1.49, p value 2.04 x 10(-31)) and confirmed by independent replication in 23andMe's research cohort (OR 1.30 95% CI 1.25-1.34, p value 1.00 x 10(-47)). The lead SNP was also associated with lower lymphocyte counts and in silico follow-up suggests a potential effect on T-lymphocytes at HLA-B*55:01. We also observed a significant hit in PTPN22 and the GWAS results correlated with the genetics of rheumatoid arthritis and psoriasis. We present robust evidence for the role of an allele of the major histocompatibility complex (MHC) I gene HLA-B in the occurrence of penicillin allergy.Peer reviewe

    Identification of novel genes for glucose metabolism based upon expression pattern in human islets and effect on insulin secretion and glycemia

    Get PDF
    Normal glucose homeostasis is characterized by appropriate insulin secretion and low HbA1c. Gene expression signatures associated with these two phenotypes could be essential for islet function and pathophysiology of type 2 diabetes (T2D). Herein, we employed a novel approach to identify candidate genes involved in T2D by correlating islet microarray gene expression data (78 donors) with insulin secretion and HbA1c level. The expression of 649 genes (P < 0.05) was correlated with insulin secretion and HbA1c. Of them, five genes (GLR1A, PPP1R1A, PLCDXD3, FAM105A and ENO2) correlated positively with insulin secretion/negatively with HbA1c and one gene (GNG5) correlated negatively with insulin secretion/positively with HbA1c were followed up. The five positively correlated genes have lower expression levels in diabetic islets, whereas GNG5 expression is higher. Exposure of human islets to high glucose for 24 h resulted in up-regulation of GNG5 and PPP1R1A expression, whereas the expression of ENO2 and GLRA1 was down-regulated. No effect was seen on the expression of FAM105A and PLCXD3. siRNA silencing in INS-1 832/13 cells showed reduction in insulin secretion for PPP1R1A, PLXCD3, ENO2, FAM105A and GNG5 but not GLRA1. Although no SNP in these gene loci passed the genome-wide significance for association with T2D in DIAGRAM+ database, four SNPs influenced gene expression in cis in human islets. In conclusion, we identified and confirmed PPP1R1A, FAM105A, ENO2, PLCDX3 and GNG5 as potential regulators of islet function. We provide a list of candidate genes as a resource for exploring their role in the pathogenesis of T2

    Integrating genetics with newborn metabolomics in infantile hypertrophic pyloric stenosis

    Get PDF
    Introduction Infantile hypertrophic pyloric stenosis (IHPS) is caused by hypertrophy of the pyloric sphincter muscle. Objectives: Since previous reports have implicated lipid metabolism, we aimed to (1) investigate associations between IHPS and a wide array of lipid-related metabolites in newborns, and (2) address whether detected differences in metabolite levels were likely to be driven by genetic differences between IHPS cases and controls or by differences in early life feeding patterns. Methods: We used population-based random selection of IHPS cases and controls born in Denmark between 1997 and 2014. We randomly took dried blood spots of newborns from 267 pairs of IHPS cases and controls matched by sex and day of birth. We used a mixed-effects linear regression model to evaluate associations between 148 metabolites and IHPS in a matched case-control design. Results The phosphatidylcholine PC(38:4) showed significantly lower levels in IHPS cases (P = 4.68 x 10(-8)) as did six other correlated metabolites (four phosphatidylcholines, acylcarnitine AC(2:0), and histidine). Associations were driven by 98 case-control pairs born before 2009, when median age at sampling was 6 days. No association was seen in 169 pairs born in 2009 or later, when median age at sampling was 2 days. More IHPS cases than controls had a diagnosis for neonatal difficulty in feeding at breast (P = 6.15 x 10(-3)). Genetic variants known to be associated with PC(38:4) levels did not associate with IHPS. Conclusions: We detected lower levels of certain metabolites in IHPS, possibly reflecting different feeding patterns in the first days of life.Peer reviewe

    Comprehensive genome-wide association study of different forms of hernia identifies more than 80 associated loci

    Get PDF
    Hernias are characterized by protrusion of an organ or tissue through its surrounding cavity and often require surgical repair. In this study we identify 65,492 cases for five hernia types in the UK Biobank and perform genome-wide association study scans for these five types and two combined groups. Our results show associated variants in all scans. Inguinal hernia has the most associations and we conduct a follow-up study with 23,803 additional cases from four study groups giving 84 independently associated variants. Identified variants from all scans are collapsed into 81 independent loci. Further testing shows that 26 loci are associated with more than one hernia type, suggesting substantial overlap between the underlying genetic mechanisms. Pathway analyses identify several genes with a strong link to collagen and/or elastin (ADAMTS6, ADAMTS16, ADAMTSL3, LOX, ELN) in the vicinity of associated loci for inguinal hernia, which substantiates an essential role of connective tissue morphology. Hernias involve protrusion of an organ or tissue through its surrounding cavity. Here the authors carry out GWAS for five types of hernia and find 81 variants, most of which are associated with inguinal hernia; downstream analysis suggests an important role for connective tissue morphology.Peer reviewe

    Genome-wide association study of febrile seizures implicates fever response and neuronal excitability genes

    Get PDF
    Febrile seizures represent the most common type of pathological brain activity in young children and are influenced by genetic, environmental and developmental factors. In a minority of cases, febrile seizures precede later development of epilepsy. We conducted a genome-wide association study of febrile seizures in 7635 cases and 83 966 controls identifying and replicating seven new loci, all with P < 5 x 10(-10). Variants at two loci were functionally related to altered expression of the fever response genes PTGER3 and IL10, and four other loci harboured genes (BSN, ERC2, GABRG2, HERC1) influencing neuronal excitability by regulating neurotransmitter release and binding, vesicular transport or membrane trafficking at the synapse. Four previously reported loci (SCN1A, SCN2A, ANO3 and 12q21.33) were all confirmed. Collectively, the seven novel and four previously reported loci explained 2.8% of the variance in liability to febrile seizures, and the single nucleotide polymorphism heritability based on all common autosomal single nucleotide polymorphisms was 10.8%. GABRG2, SCN1A and SCN2A are well-established epilepsy genes and, overall, we found positive genetic correlations with epilepsies (r(g) = 0.39, P = 1.68 x 10(-4)). Further, we found that higher polygenic risk scores for febrile seizures were associated with epilepsy and with history of hospital admission for febrile seizures. Finally, we found that polygenic risk of febrile seizures was lower in febrile seizure patients with neuropsychiatric disease compared to febrile seizure patients in a general population sample. In conclusion, this largest genetic investigation of febrile seizures to date implicates central fever response genes as well as genes affecting neuronal excitability, including several known epilepsy genes. Further functional and genetic studies based on these findings will provide important insights into the complex pathophysiological processes of seizures with and without fever.Peer reviewe

    Genetic variant effects on gene expression in human pancreatic islets and their implications for T2D

    Get PDF
    Most signals detected by genome-wide association studies map to non-coding sequence and their tissue-specific effects influence transcriptional regulation. However, key tissues and cell-types required for functional inference are absent from large-scale resources. Here we explore the relationship between genetic variants influencing predisposition to type 2 diabetes (T2D) and related glycemic traits, and human pancreatic islet transcription using data from 420 donors. We find: (a) 7741 cis-eQTLs in islets with a replication rate across 44 GTEx tissues between 40% and 73%; (b) marked overlap between islet cis-eQTL signals and active regulatory sequences in islets, with reduced eQTL effect size observed in the stretch enhancers most strongly implicated in GWAS signal location; (c) enrichment of islet cis-eQTL signals with T2D risk variants identified in genome-wide association studies; and (d) colocalization between 47 islet cis-eQTLs and variants influencing T2D or glycemic traits, including DGKB and TCF7L2. Our findings illustrate the advantages of performing functional and regulatory studies in disease relevant tissues.Peer reviewe

    Variants in the fetal genome near pro-inflammatory cytokine genes on 2q13 associate with gestational duration

    Get PDF
    The duration of pregnancy is influenced by fetal and maternal genetic and non-genetic factors. Here we report a fetal genome-wide association meta-analysis of gestational duration, and early preterm, preterm, and postterm birth in 84,689 infants. One locus on chromosome 2q13 is associated with gestational duration; the association is replicated in 9,291 additional infants (combined P= 3.96 x 10(-14)). Analysis of 15,588 mother-child pairs shows that the association is driven by fetal rather than maternal genotype. Functional experiments show that the lead SNP, rs7594852, alters the binding of the HIC1 transcriptional repressor. Genes at the locus include several interleukin 1 family members with roles in pro-inflammatory pathways that are central to the process of parturition. Further understanding of the underlying mechanisms will be of great public health importance, since giving birth either before or after the window of term gestation is associated with increased morbidity and mortality.Peer reviewe

    Genome-wide association study of placental weight in 65,405 newborns and 113,620 parents reveals distinct and shared genetic influences between placental and fetal growth

    Get PDF
    A well-functioning placenta is essential for fetal and maternal health throughout pregnancy. Using placental weight as a proxy for placental growth, we report genome-wide association analyses in the fetal (n = 65,405), maternal (n = 61,228) and paternal (n = 52,392) genomes, yielding 40 independent association signals. Twenty-six signals are classified as fetal, four maternal and three fetal and maternal. A maternal parent-of-origin effect is seen near KCNQ1. Genetic correlation and colocalization analyses reveal overlap with birth weight genetics, but 12 loci are classified as predominantly or only affecting placental weight, with connections to placental development and morphology, and transport of antibodies and amino acids. Mendelian randomization analyses indicate that fetal genetically mediated higher placental weight is causally associated with preeclampsia risk and shorter gestational duration. Moreover, these analyses support the role of fetal insulin in regulating placental weight, providing a key link between fetal and placental growth

    The Early Growth Genetics (EGG) and EArly Genetics and Lifecourse Epidemiology (EAGLE) consortia:design, results and future prospects

    Get PDF
    corecore